THE REBINDER NUMBER AS A CHARACTERISTIC OF THE
THERMODYNAMIC AND TRANSPORT PROPERTIES OF
DISPERSED MATERIALS

V. M. Kazanskii UDC 66.047,35

An equation connecting the Rebinder number with the thermodynamic and transport charac-
teristics of dispersed materials and the parameters of external heat and mass transfer is

obtained.

The Rebinder number Rb and the dimensionless temperature coefficient of drying B, introduced by
Lykov in the form of the relationships [1]

Rb — Cadl g GLE—H) |y, (1)
rdu du (t —1,)
are the main characteristics of the material in the equation representing the drying kinetics of dispersed
materials:

Ki, == Ki,, (1) LuKo (1 -- Rb) = Ki,, () Lu (Ko - - B). (2)

The parameters Rb and B are characteristics of the integral equation of drying kinetics and, hence, they
take into account the properties of the material and its interaction with the surrounding medium. It is of
interest to establish a relationship between the integral parameters Rb and B and the local characteristics
— the criteria of external and internal heat and mass transfer. The present paper is devoted to this im-
portant current problem.

Convective drying of a dispersed material is represented by a system of nonlinear equations [1]:

ot er ou
— =z (i) - — — 3)
ot V(v ¢, Ot : (
%’i— == V (a171vu T al)lévl‘) (4)
with boundary conditions of the third kind:
b (Vg == 0y (g~ 1) -+ (1= &) reu,, (1, — 1), (5),
Ay (V’ll) g 7 amY6 (Vt) s %m (uo - Lts). (6)

In principle the solution of system (3)-(4), taken in conjunction with (5)~(6), can be used to find t and l—l, and
then Rb and B can be found as functions of the material characteristics laqs am, 0, Cq» r) and drying con-
ditions (aq, am, ty, ug) from Egs. (1). Mathematical difficulties, however, prevent a complete analytical
solution of this problem. The best attempt has been the obtention of a numerical solution on a computer, as
in [2], for instance, where all the transport coefficients were assumed constant, which is a rather coarse
approximation {1, 3]. Moreover, numerical solutions are not suitable for the investigation of Rb and B in
relation to particular factors. Hence, it is better to choose another approach.

Kiev Civil Engineering Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 27, No. 1,
pp. 48~54, July, 1974. Original article submitted November 27, 1973.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

823



By definition:

7 —l—j‘tdv, P= Lj udv. )
Vv v
\4

Applying (7) to (3) and (4) and using the Gauss theorem, we obtain:

dt 1 & du
== | a,(vl)dF i 8
i< [ et Tk (®)
F
di_ | ten i + and o ar, ©
dt 1% J s " §
from which after integration:
d _F & du -
= - a, (), L+ — 22 10
dt 1% A\ )s ¢y dt’ 10
du F F
=y (vu) o+ -V 08 (vl),, (11)

where tg and ug are quantities averaged over the surface.

We note that in (5) the phase change number ¢, like all the other characteristics of the material,
relates to the surface of the material. In this case € for all materials is unity, since in convective drying
mass can be removed from the surface of the material only in the form of vapor. A change in the mean
(integral) mass content u of the material in convective drying can also be effected only by evaporation.
The transfer of mass within the material in liquid form, which corresponds to € <1, leads only to a
redistribution of the mass content within the material and u remains constant. Hence, in (8) and (10) [but
not in (3)] € is also unity.

For simplicity we will consider the one-dimensional symmetric problem — the drying of an infinite
plate of thickness 21 with the coordinate origin at the center of the plate. The ratio V/F in (10) and (11)
is then equal to the plate thickness . We assume now that the distributions of temperature and mass con-
tent in the material are given hy:

t=1— 9, ()t — &), (12)
U= Uy — O, (Nt — t),
where ¢q and ¢m are dimensionless functions satisfying the conditions:
@g)e = (Pm), =0, (@) = () = 1. (13)
We then easily obtain:
(A1), = (vcpq)s E—=t) _ *a gy,

- S‘cpqu 1 !
) (14)
(vid), = AYLPL_)S,Q:ESL = g,
75 ¢ dV — 1

14

where kq and ky, are dimensionless coefficients which depend on the distribution of t and u in the material.

Substituting (14) in (10) and (11) and using the boundary conditions (5) and (6) we eliminate tg and ug
from the equations and obtain:

df _ rdu @ykqty (ty — 1) , (15)
v ggdt T [(agk, - agl)
cdu agk ocm(hk oo )ty — 1) + apOkelagn g — 8 (16)
Tdv [(hgky ~+ gl VR, — il
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After substituting (15) and (16) in (1) we finally obtain:

Rb J— } L _c‘laqkqaq (amvkm +_aml) , (17)
' Uy—u , R
famkm('/am l (qukq -+ (qu) too_ _E - —];:117 61(1(1]
r (?‘ — Uy) aqkqaq (0 — Ond) _ . (18)
Cq t—1) a k. o [(quq + a,l) L bl kg (1 — uz }
m'mm iv km (to - t)

Equations (17) and (18) express Rb and B as functions of the material characteristics and the param-~
eters of external heat and mass transfer. It is important here that no assumptions regarding the constancy
of the transport coefficients were made in the deduction of (17) and (18). Hence, (17) and (18) are valid also
for significantly nonlinear heat- and mass-transfer processes, a typical example of which is drying.

The only assumption used in the deduction was the introduction of coefficients ky and kyy, character-
izing the distribution of t and u in the material. For a parabolic distribution, which follows from the solu-
tion of Egs. (3)-(4) with constant coefficients [4], and has also been confirmed experimentally [5-7], we
easily obtain

x*
Qg = P = 3 (19)
from which
ky =ty =3. (20)

For other distributions kq and kpy, are of the same order of magnitude and are equal if ¢y = ¢y, For in~
stance, for a linear distribution of t and u kq =km = 1, for a cubic distribution kg = kyy, = 4, and so on.

In the general case kq and ky are dimensioniess characteristics of the material, since the distribution of
t and u in the material is determined by its thermodynamic and transport properties. In particular, the
distributions of t and u are affected by the phase change number € within the material [4], which is not
contained in explicit form in the solutions of (17) and (18) for the reasons mentioned above.

Formulas (17) and (18) can be put in another form. Using the Posnov number Pn, given by the relation

81

Pn = , 21)
(ug—te) (
we obtain
W)y _ (v9)s Pn &,
= T8 = 9T Pp, 22
S 22)
where kgm = 1 when ¢4 = ¢y,. Then (6) and (11) take the form:
Ay (1 - kqm Pn) (Vu)s =Qp, (uO - uﬂ)1 (23)
du a .
27l - 24
o~ (L hy Py (24)

Performing all the algebra similar to that described above, but with (6) and (11) replaced by (23) and
(24), we obtain expressions for the rate of change of t and u for Rb and B:

dtrdu | agkg, (B —1) (25)
dv e dr - L(hk, =)’
A GOy (L4 kg Py — 1) (26)
dv — ayyk, (1+k,, Po) S o, 0] 7
Rb = ] = anqaqkq [amykm (1 + kqm pn) 1‘ aml] (to _-'_'Z) (27)
1O (1 kg Pl = Aok (g — 1)
= r (l‘l - un) i aqkqaq [amvkm (1 - kqm Pn) - q’m” (28)
Cy (E—15) Ay leO (1 by P)(A ey - )



In dimensionless-number form (27) and (28) become:

Rb = 1 —_— I.E(I qu [kM(l + kqm pﬂ) + B]m] , (29)
o Bi,, Lut Ko (1 - ., Pn) (%, -+ Bi)
B = Ko - _FaBiglln (1 + ko Pr) = Biy] 20
by Biy, Lu(l - kg, Pn) (k, = Bi,)
where the similarity criteria are selected from the relations
Lu = %o, Bi,= 2o, Bi, =%l | go . LU=t (31)
aq 7»q am¥ Cq (t - tn)

Finally, for a parabolic distribution of t and u in the material, which is assumed in most investigations,
we obtain:
. Bi,(3+3Pn-Bi,)
" Bi,,LuKo(l -+ Pn) (3 -~ Bi,) '
Bi, (3 -+ 3Pn -~ Bi,)
Bi, Lu(l + Pn)(3 - Bi,)

Rb=1 (32)

B =Ko — (33)

Equations (17), (18) and (29), (30) express in explicit form Rb and B as functions of the character-
istics of the dispersed material @q» @m, cq» I, O, Lu, Pn) and the parameters of the external heat and
mass transfer (ony, aq. ty, Yy, Big, Biy,). In particular, it is clear from (29) and (30) that the effect of
the drying regime parameters on Rb and B is determined mainly by the relation between the internal heat
and mass transfer (\q and apyy) and the external heat and mass transfer (am and aq), i.e., by the value of

the Biot number,

An analysis of Egs. (17), (18) and (29), (30) can provide an answer to the two main questions as-
sociated with the practical application of Rb and B. Firstly, the obtained solutions indicate the experi-
mental conditions in which the measured Rb and B are single-valued characteristics of the dispersed ma-
terial and are independent of the prescribed drying condifions. Secondly, a relationship can be established
between the Rb and B which are characteristics of the material, and the Rb and B which are contained in
the equation of convective drying in particular prescribed conditions. To solve these questions we consider
the behavior of Egs. (17), (18) and (29), (30) in different regimes.

We consider the limiting case of drying of "thick" samples in a comparatively rapid drying regime,
where Big —~«, Bim — «. In this case we obtain from (17), (18) and (29), (30).

Rb? = 1 - Calgkelly =D (34)
1y [k, (g — 1)+ kS(f,—1)]

or

Rp® =1+ by (35)
ko Lu Ko (1 - &gy, Pn)
and
po— [ —1) 4 gk ty—0 (36)
gty —18 - a,lk, {5y —u) + k0, — D]

or

B"= Ko k (37)

I S
Tk Lu(l + kg, P)

At high values of the Biot number tg — t; and ug —u,. In view of this, according fo (14), (21), (22), and
(31), we can write:

knKo  Fe (38)
k k., Pn

q qm
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where

Fe’ — KoPn= (39)

q

depends only on the properties of the material. In exactly the same way Pn in the considered regime de~
pends only on the internal heat and mass transfer in the material. From (34) we then obtain

RES — 1 - kg P11

- . (40)
LuFe’ (1 -+ &y, Pn)

It is apparent from (40) that Rb depends only on quantities characterizing the internal heat and mass trans-
fer in the material. In other words, Rb, measured in this drying regime, is a characteristic of the ther-
modynamic (cq, r) and transport (am, aq, 9, kq, km, kqm) properties of the material and is completely
independent of the conditions of external heat and mass transfer. This criterion can conveniently be de~
signated Rb’, ‘

It is clear from what has been said that an investigation of the heat- and mass-transfer properties
of dispersed materials and the classification of these materials according to their behavior in the drying
process will have to be based on Rb’, and not Rb, measured in particular conditions, since it is Rb® which
characterizes the properties of the material, which are independent of the arbitrarily prescribed drying
regime parameters.

The use of Rb as a characteristic of the transport properties of dispersed materials is particularly
advantageous in cases where the transport coefficients depend strongly on the temperature and mass con-
tent. In fact, the overwhelming majority of experimental methods of determining ay, and 6 are based on
solutions of Egs. (3) and (4) with piecewise-constant coefficients, which introduces a large error into the
theoretical equations [1, 3] and makes such methods fundamentally nonrigorous. At the same time, the
experimental measurement of Rb® from Eq. (1) is effected without any assumptions and is comparatively
easy. The accuracy of this measurement is limited only by the accuracy of the measuring instruments.
Thus, Rb can be used as a characteristic of the transport properties of dispersed materials on a par with
the usually employed characteristics (aq, am, 6). Its use is often much more convenient, since Rb? can
be experimentally measured more easily and more accurately than the other characteristics.

Equally important is the establishment of a relationship between Rb characteristic of a particular
drying regime and Rb’, since the basic drying Eq. (2) contains Rb, and not Rb’, In the general case this
relationship is given by Eqgs. (27), (29) and (34), (40) and is complex. The introduction of some assump-
tions gives an approximate relationship in a simpler form.

For arbitrary Biy and Biy, Pn depends not only on the properties of the material, but also on the
drying regime. If, as a first approximation, we assume that Pn depends weakly on the drying regime, then
from (29) and (34) we obtain

ca.k, (f—1) [ 1 -

e

km (l - kqm pn) ‘l

Rb=1-- — Bi,, T (41)
e (1 gy, Pty — 10) (1 -
“ qu
from which
U (Lt kg, P)
Rb—1 Bi, (42)
Rb0— 1 | g '
"~ Bi

In principle the measurement of Big and Biy, is fairly complicated. In convective drying, however,
Bigy and Bipy usually depend equally on the blowing rate. Hence, we can expect that Rb and Rb® will be
approximately equal even in cases where the numerator and denominator in (42) are far from unity. This
is confirmed by the results of [8], where it was shown experimentally that Rb is not greatly affected by the
drying regime parameters for different values of Bigy, even values greater than unity, The approximate
numerical calculation of Rb made in [2] also shows that Rb is practically independent of Big when Big is
large.
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We consider finally the case where Big and Bip, are less than unity, which corresponds to gentle
drying of a thin layer of material. It follows directly from (27) that

. Bi, -

%, < 1 )(t(, -
Rb=1-+- . B"il — . (43)

rop (1 =2 )(uo —)

q
If Biq is small, then, expanding (1 + Big / kq)"1 in a series and taking only the first term we can write:
Rb=1 - jl,(t—ﬂ:_t_)__(l_i_ﬂ__BIQ). (44)
ro., (Uy— u) k., k,

In the limiting case where Big = Biy, = 0 all the characteristics of the material disappear from (43) and we
obtain the trivial equality

Rb=1-+ 2alb=0 _q (45)
ros, (te—=u)
since for a thin layer
&y (ty — 1) -+ 1oLy, (g — 1) = 0. (46)

The considered limiting cases of small and large values of the Biot number do not, of course, repre-
sent the whole region of application of the obtained equations. These equations can probably be simplified
considerably for practical calculations, but the solution of this question will require experimental data,
which are still very scarce at present.

NOTATION
u is the mass content, kg /kg;
t is the temperature, °K;
T is the time, sec;
aq» 9m are the heat- and mass-diffusion coefficients, m?/ sec;
€ is the phase change number;
r is the specific heat of evaporation, J /kg;
cq is the specific heat, J /kg-degK;
) is the thermogradient coefficient, 1/degK;
A is the thermal conductivity, W /m - degK;
v is the density, kg/m?;
aq is the external heat-transfer coefficient, W /m?- deg K;
om is the external mass-transfer coefficient, kg / m?- sec;
V,F,! are the volume, surface, and thickness, respectively, of sample.

Subscripts

c denotes the center of sample;
s denotes the surface of sample;
0 denotes the equilibrium state.
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